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Abstract: Optical coherence tomography (OCT) is susceptible to the coherent noise, which is
the speckle noise that deteriorates contrast and the detail structural information of OCT images,
thus imposing significant limitations on the diagnostic capability of OCT. In this paper, we
propose a novel OCT image denoising method by using an end-to-end deep learning network with
a perceptually-sensitive loss function. The method has been validated on OCT images acquired
from healthy volunteers’ eyes. The label images for training and evaluating OCT denoising deep
learning models are images generated by averaging 50 frames of respective registered B-scans
acquired from a region with scans occurring in one direction. The results showed that the new
approach can outperform other related denoising methods on the aspects of preserving detail
structure information of retinal layers and improving the perceptual metrics in the human visual
perception.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) imaging is currently considered as an indispensable
diagnostic tool in ophthalmology [1–3], dermatology [4,5] and cardiology [6,7]. OCT generates
in vivo cross-sectional structural images of anatomical structure with microscopic resolution in
real time by detecting the interference signals between the reflected signals from the reference
mirror and the backscattering signals from biological tissues [8]. As a consequence, OCT is
susceptible to the coherent noise, which is the speckle noise that imposes significant limitations
on its diagnostic capabilities. The noise deteriorates the contrast of OCT images and the detail
structural information [9], and is dependent on both the wavelength of the imaging beam and
the structural characteristics of the tissues [9]. Furthermore, poor image quality can affect the
accuracy of segmentation of retinal layers [10] and the measurements of tissue thickness [11]. To
address this problem, a number of denoising algorithms have been proposed [12–15], among
which frame averaging methods [14,15] are the most commonly used in practice. Studies have
shown that both the contrast and the quality of OCT images can be improved by averaging
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the registered multi-frame OCT images acquired from a region with scans occurring in one
direction [14,15]. Additionally, averaging more frames increase the contrast and image quality
[16]. Nevertheless, this type of procedure requires longer scanning time and therefore is difficult
to be performed in clinical practice, especially for elderly patients and infants due to that they
cannot keep stationary during image acquisition.

Recently, deep learning has enabled promising applications and achieved significant research
results in the field of ophthalmological image processing. On fundus photography, deep learning
has been applied in segmentation [17], classification [18], and synthesis [19], while on OCT
images, it has been applied in segmentation [20], classification [21], and denoising [22–24].
However, the application of deep learning in OCT image denoising is still in the primitive stage
[22–24]. An edge-sensitive conditional generative adversarial network (cGAN) has been proposed
to denoise OCT images for commercial OCT scanners [22]. Furthermore, a generative adversarial
network (GAN) with Wasserstein distance and perceptual similarity has been proposed to enhance
the commercial OCT images [23]. Moreover, a convolutional neural network (CNN) has been
proposed and achieved good denoising performance [24]. In all these studies, noisy-label image
pairs, which were used for training deep learning models, were generated based on multiple
volumetric scans with the registration-averaging method. However, in ordinary clinical practice
such approach is limited by the scarcity of usable B-scans in acquiring OCT volumes. Besides
that, all these studies require a large OCT training data size for training, which would also limit
their potential applications.
Considering the significant feature correlation commonly observed in OCT images, such as

the fine structures within each retinal layer and the boundary between different layers, denoising
methods should be able to remove the noise without losing the structural details and retain
realistic human visual perception. To tackle these issues, this paper proposes a new method
based on the end-to-end deep learning technology with a perceptually-sensitive loss function to
remove speckle noise in OCT images. The method has been validated on OCT images acquired
from healthy volunteers’ eyes. The label images for training and evaluating OCT denoising
deep learning models are images averaged from 50 frames of registered B-scans acquired from
a region with scans occurring in one direction using our custom OCT scanner. Compared to
the traditional denoising methods, well-trained deep learning models are able to exploit spatial
correlations at multiple levels of resolution using a hierarchical network, and such correlations
are very crucial to the denoising capability. Furthermore, the perceptually-sensitive loss function
proposed in this paper has the capability of preserving structure information of OCT images,
which is also beneficial to noise reduction.

2. Methods

2.1. Noise reduction for OCT images

A typical OCT imaging system includes a light source, an interferometer, and corresponding
electronics components, which inherently induces light intensity noise, photonics shot noise, as
well as thermal noise from the electronics. The speckle noise of OCT images can be modeled as
multiplicative noise [25]. An OCT image with speckle noise Nr can be defined as:

Nr = S ∗ Ns + Nb, (1)

where S is the desired noise-free image, Ns and Nb are the speckle noise and the background
noise, respectively.
The objective of OCT denoising methods [12,13,25] is to try to recover a noise-free OCT

image S from the noisy OCT image Nr. A typical OCT denoising model can be defined as:

Ŝ = R(Nr), (2)

where Ŝ denotes a denoised OCT image generated by an estimator of the denoising model R.
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2.2. Denoising model estimation using convolutional neural networks

Deep learning is currently considered as the most promising and effective denoising method in
medical imaging [22–24,26–30]. Aiming at building deep learning models to reduce the noise of
OCT images, CNNs were employed to model the estimator R. The training of CNNs consists
of forward propagation, loss function calculation, and backpropagation. Briefly, the idea is to
first input the noisy OCT images to the neural networks; the convolutional layers output the
denoised OCT images, after which the perceptually-sensitive loss function is used to calculate
the difference between the denoised OCT images and the label OCT images. Consequently, the
back-propagation step passes the loss difference back to the convolutional layers to compute
the gradient and update layer weights of the neural networks. Such modeling procedure can
be considered as a supervise learning, where CNNs are optimized to minimize the difference
between a set of noisy images Nr and a set of label images S. Realistically speaking, the set of
noise-free images S is impossible to obtain. In turn, we use an innovative label data generation
operation to get a set of label images Sl as the labels. The deep learning model is trained by
minimizing the empirical risk

arg min
Θ

∑
L(RΘ(Nr),Sl), (3)

where RΘ is the denoising deep learning model and the Θ is the parameters to be trained. Once
the optimal hyper-parameters of the CNNs are determined, the model is successfully established,
which can be used for denoising OCT images without further training. A schematic description
of the denoising pipeline in this study is shown in Fig. 1.

Fig. 1. Schematic description of the deep learning-based denoising pipeline for OCT
images.

2.3. Network architecture

In this paper, we propose a structure of feed-forward CNN with a perceptually-sensitive loss
function to denoise OCT images. The network design is shown in Fig. 2. The D-layered deep
CNN, which was modified from the denoising convolutional neural networks (DnCNN) [31],
contains three types of layers. The input and output of the CNN are the set of noisy OCT images
Nr and the denoised images Ŝ, respectively. The first layer consisted 64 filters (size 3× 3× 1) that
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are used to generate 64 feature maps and rectified linear units (ReLU, max(0; ·)). From layers 2
to layer (D-1), there are 64 filters with 3 × 3 in size (size 3 × 3 × 64). In contrast to the first layer,
batch normalization was added between the convolution layer and the ReLU function. In order to
avoid overfitting, dropout was added between batch normalization and the ReLU function. For
the output layer, a convolution filter of size 3 × 3 × 64 was used to reconstruct the denoised OCT
image.

Fig. 2. Schematic overview of the neural network architecture in this study.

2.4. The perceptually-sensitive loss function for the denoising neural network

Loss functions are vital in training deep learning models, and affect the effectiveness and accuracy
of the neural networks. Medical images always contain strong structural feature correlations and
have strong interdependencies, such as intra-layer structure and boundary between layers in OCT
images. The structural similarity index (SSIM) [32] is a metric to evaluate image performance
in human visual perception, which is sensitive to changes in local structure and contrast of the
images in the human visual perception [33]. In addition, multi-scale SSIM (MS-SSIM), by using
SSIM as a basis, extends the effort by making multiple SSIM image evaluations at different
image scales. Zhao et al. [34] have discovered that the network trained with MS-SSIM +MSE
and MS-SSIM + L1 can generate better results compared to the L1 loss or MSE loss in image
restoration tasks. In this study, the MS-SSIM was used as the perceptually-sensitive loss function
to train denoising neural network for OCT images. The SSIM is presented as follows:

SSIM(Sl, Ŝ) = (
2uŜuSl + C1

u2
Ŝ
+ u2Sl

+ C1
×

2σSlŜ + C2

σ2
Ŝ
+ σ2

Sl
+ C2

), (4)

where uŜ and σŜ are the means and the standard deviations of the denoised image Ŝ, respectively;
uSl and σSl are the means and the standard deviations of the label image Sl, respectively; σŜSl

denotes the cross-covariance between Ŝ and Sl; C1 and C2 are small positive values used to avoid
numerical instability.

Compared with SSIM, MS-SSIM provides a multiscale measurement of the image, which can
be written as:

MS−SSIM(Sl, Ŝ) =
M∏
i=1

SSIM(Sl
i, Ŝi), (5)

where Sl is another form of the label image Sl; Ŝi, and Sl
i are the local image information at the ith

level, and M is the number of scales.
Therefore, the perceptually-sensitive loss function can be defined as follows:

Lpercetually−sensitive = 1 −MS−SSIM(Sl, Ŝ), (6)
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3. Experimental setup

3.1. Spectral-domain OCT system

For this study, a classical spectral-domain OCT system was used to acquire the OCT B-scan
images. The light source was a wideband super luminescent diode with a central wavelength of
845 nm, and a full width at half maximum bandwidth of 45 nm. The scan size was 1024 × 1024
(width × height) corresponding to 9 × 9 mm2 with a macular-centered scanning protocol. The
axial resolution and lateral resolution were 6 µm and 16 µm in our custom OCT scanner,
respectively.

3.2. Data acquisition and pre-processing

For data acquisition, 47 groups of OCT B-scans were obtained from 47 healthy eyes, using
the OCT scanner. The following protocol was used in the acquisition: 50 frames of B-scan
OCT images were obtained along the same scanning direction; potential misalignments in tissue
structure that occurred due to eye movement between different scans were eliminated by using a
non-rigid registration method with the scale-invariant feature transform, which is implemented
on MATLAB. Consequently, the registered noisy B-scan images were averaged to generate a
label image with minimal speckle noise. Finally, one of the noisy B-scan images was randomly
selected to form noisy-label B-scans pairs. The noisy and label images are shown in Fig. 3.

Fig. 3. Noisy and label images used in the training phase. (A-C) Noisy OCT images; (D-F)
the corresponding label images generated by averaging 50 frames of registered B-scans
acquired from a region with scans occurring in one direction.

As for preprocessing, the original images were cropped to 640 × 640 pixels by a cropping
mask whose central point is the same as the original images. Such a cropping rule eliminates the
blurred structure on the peripheral parts of the image. The image patch method was adopted to
train the proposed neural networks in order to solve the memory drainage problem raised when
using the entire images while training.

3.3. Training details

We designed a 10-layers CNN model, and the network was optimized using the Adam algorithm
[35]. The mini-batch size was 64, and the pixel size of the image patches being input was 40× 40.
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The training epoch was 100 with a milestone at 50; the learning rate was reduced to 1/10 the
original when the training epoch reached the milestone. The training method was implemented
using Pytorch (https://pytorch.org/) with a NVIDIA GTX Titan Xp GPU.
The dataset includes two parts, noisy B-scan images Nr and B-scan label images Sl. Each

B-scan label image in the respective noisy-label image pair was generated by averaging the 50
frames of registered, as acquired B-scan OCT images. The noisy B-scan image in each pair was
randomly selected from the 50 frames of B-scan OCT images along the same direction. 37 of the
47 pairs were used as training dataset, while the remaining 10 pairs were used as test dataset.

3.4. Quantitative metrics

Model evaluation, as well as benchmarking with existing models require quantitative metrics.
Four popular performance indices were adopted as such metrics, namely, peak signal-to-noise
ratio (PSNR), SSIM [32], MS-SSIM [36], and mean squared error (MSE).
The PSNR and MSE are two classical metrics used in quality measurement between the

original and the denoised OCT image. In this work, MSE calculates the cumulative error between
the denoised images and the label images, whereas PSNR measures the peak error. A small MSE
value implies minor error, and a large PSNR implies better quality of the denoised image.

The MSE is defined as:

MSE =
∑

M,N(Sl − Ŝ)2

M × N
, (7)

where, M and N are the number of rows and columns of the OCT image, respectively.
The PSNR (in dB) is described as:

PSNR = 10 × log10(
MAX2

Sl

MSE
), (8)

where MAXSl is the maximum possible pixel value of the OCT image.
Considering that the medical images contain strong feature correlations and interdependencies,

we adopted the SSIM and the MS-SSIM to evaluate performance in the human visual perception
and changes in tissue structure between the denoised OCT images and the corresponding label
OCT images. The SSIM and MS-SSIM were respectively calculated as Eq. 4 and 5. They both
measure the similarity of structural information in two images, where 0 indicates no similarity
and 1 indicates total positive similarity. Although the proposed neural network is being trained
with a loss function based on SSIM index, the SSIM and MS-SSIM are still objective and popular
quantitative metrics in image restoration tasks [33,34].

3.5. Comparative studies

3.5.1. Comparative studies across different loss functions

To investigate the performance of the proposed perceptually-sensitive loss function in this work,
we compared three loss functions with the same neural network, including MSE loss function,
L1 loss function, the edge loss function and their various combinations. Due to its convexity
and differentiability [37], the MSE loss function is widely used for model optimization in many
image processing tasks, such as super-resolution, deburring and denoising. However, it suffers
from some inherent defects. When the tasks involve image quality restoration, the MSE loss
function poorly correlates with image quality as perceived by the human visual perception since
it assumes that the impact of the image noise is unrelated to the local features of the image [34].
Besides, the MSE loss function would make the denoised results unnatural and blurry [38].
The MSE loss function is defined as follows:

LMSE =
1

H ×W
Sl − Ŝ

2
2 , (9)

where H and W stand for the height and width of the image, respectively.

https://pytorch.org/
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Another widely used loss function in image processing tasks is the L1 loss function. The L1
loss solves the problem of over-penalizing of incidental large differences [33]. Therefore, the L1
loss can often outperform the MSE loss. The L1 loss function is defined as follows:

LL1 =
1

H ×W
��Sl − Ŝ

�� , (10)

As for OCT image denoising, Ma et al. have proposed the use of edge loss function to preserve
the edge of OCT layers [22]. The edge loss function calculates the edge similarity between two
images, and therefore is sensitive to the edge-related details.
The edge loss function inspired by the edge preservation index is defined as follows:

Ledge = E
−log

∑
i,j

���Sl
i+1,j − Sl

i,j

���∑
i,j

��Ŝi+1,j − Ŝi,j
��  , (11)

where Sl is another form of the label image Sl, i and j represent coordinates in the longitudinal
and lateral direction in the B-scan images.
Besides each loss function, intuitively, combinations of the loss functions have been studied

as well. In this work, there were eight loss functions being investigated in the Comparative
experiments, which are recorded in Table 1. For simplicity, they were divided into three groups,
namely, the conventional loss group (Group 1), the edge-aware loss group (Group 2), and the
perceptually-sensitive loss group (Group 3). All trained models were tested on the same OCT
test dataset. The compound loss functions of perceptually-sensitive are defined as follows:

LC−perceptually−sensitive = λA × LPerceptually−sensitive + λB × LB, (12)

where λA and λB is weighting factor, and the LB is the L1 loss or MSE loss function. For
the perceptually-senstitive loss together with L1 distance, λA is 1, and the λB is 0.01. For the
perceptually-senstitive loss together with MSE distance, λA is 1, and the λB is 0.02.

Table 1. Groups of the loss functions

Group Number Loss Function

Group 1
(Conventional)

L1 loss MSE loss

Group 2
(Edge-aware)

edge loss alone edge loss together with L1
distance

edge loss together with MSE
distance

Group 3
(Perceptually-
sensitive)

perceptually-sensitive
loss alone

the perceptually-sensitive
loss together with L1

distance

the perceptually-sensitive
loss together with MSE

distance

Similarly, the compound loss functions of edge-aware is defined as follows:

LC−edge−aware = λA × LEdge−aware + λB × LB, (13)

For the edge-aware loss together with L1 distance, the λA is 1, and the λB is 0.025. For the
edge-aware loss together with MSE distance, the λA is 0.95, and the λB is 0.05.

3.5.2. Comparative studies with traditional methods

The superiority of this method over traditional methods such as block-matching 3D (BM3D) [13]
and non-local means (NLM) [12], were established through comparative studies on the same
dataset. The details and implementation of these methods could be found in their literature. The
quantitative metrics elaborated in Section 3.4 were used to evaluate the performance across the
algorithms with the same dataset. The σ of the Gaussian kernel of the BM3D and the NLM is 30
and 15, respectively.
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4. Results

The proposed method successfully and effectively denoise the noisy OCT images. As shown in
Fig. 4, the contrast between the layers and the background in the denoised images is obviously
enhanced, and the background appears homogeneous. In addition, the detailed structure of
retinal tissue are successfully preserved. Furthermore, to better evaluate the performance of the
proposed method, two comparative studies were conducted. In the first study, we compared the
performance across different loss functions; in the second, we assessed the performance achieved
by two well-known traditional denoising methods.

Fig. 4. Noisy OCT images (A-D) and the corresponding denoised OCT images (E-H).

4.1. Comparative studies across different loss functions

The denoised results of different loss functions are shown in Fig. 5. It can be seen that, the
background of the denoised images is homogeneous. The results indicate that all the loss
functions are beneficial to improve the quality of noisy OCT images, and in turn reduce the
inherent speckle noise. The images produced by Group 2 (edge-aware loss) are blurry with a
bit distortion, resulting in small changes of the layer boundary. Moreover, the model with the
edge loss function alone failed to perform denoising tasks, thus the corresponding results are not
presented in Fig. 5. Group 2 presents the most intra-layer inhomogeneity within all three groups,
whereas Group 3 presents the best performance by human visual perception. Such denoised
images from Group 3 retain edge information of each layer and the contrast between the layers is
enhanced. Besides, either perceptually-sensitive loss together with the MSE distance or with the
L1 distance, generate better results than the models using L1 or MSE loss alone, as proved in
quantitative evaluations. As for quantitative evaluations, the mean and the standard deviation of
each quantitative metrics for the denoised results obtained by the eight different loss functions
are listed in Table 2.
Note that, perceptually-sensitive loss alone (CNN-SSIM) presents the best performance,

illustrating the superiority in practical visual quality.

4.2. Comparative studies with two traditional denoising methods

The results in Section 4.1 have revealed that the proposed method has generated better visual
results, with clearer layer structure and more homogeneous intensity distribution within the
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Fig. 5. Denoised results of an OCT image processed by different loss functions. (A) original
noisy image; (B) L1 loss function; (C) MSE loss function; (D) combination of edge and
L1; (E) combination of edge and MSE terms; (F) perceptually-sensitive loss function; (G)
combination of perceptually-sensitive and L1; (H) combination of perceptually-sensitive and
MSE.
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Table 2. Quantitative evaluation (mean and standard deviation) across different loss functions.

Group CNN PSNR SSIM MS-SSIM MSE

Original images 20.40±0.16 0.19±0.02 0.59±0.01 593.05±20.68

Group 1 CNN-L1 18.76±0.31 0.41±0.05 0.84±0.01 867.71±61.22

CNN-MSE 18.78±0.31 0.42±0.04 0.84±0.01 864.05±62.57

Group 2 CNN-Edge Bad result Bad result Bad result Bad result

CNN-Edge-L1 21.87±0.44 0.62±0.06 0.86±0.01 424.44±44.08

CNN-Edge-MSE 19.73±0.32 0.49±0.04 0.81±0.02 693.26±51.62

Group 3 CNN-SSIM 26.40±1.06 0.71±0.06 0.91±0.01 152.94±37.84
CNN-SSIM-L1 25.85±0.99 0.71±0.06 0.91±0.01 172.98±37.31

CNN-SSIM-MSE 26.37±0.93 0.71±0.06 0.91±0.01 153.27±33.00

layers and the background region. Therefore, we compared the proposed method with two
widely-used denoising approaches, i.e. BM3D and NLM. The quantitative metrics, which are
shown in Table 3, were calculated between the denoised results and their corresponding label
images. Although the PSNR and MSE of BM3D are superior compared with the other methods,
demonstrating BM3D is still a very powerful noise reduction approach, our proposed method
outperforms it on the aspect of similarity of structural information (SSIM and MS-SSIM metrics).

Fig. 6. Denoised results of two OCT images using (A, D) BM3D; (B, E) NLM; (C, F) CNN
with the perceptually-sensitive loss function.
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Such superiority has been confirmed in Fig. 6, where the background regions of denoised results
from BM3D and NLM are not homogeneous and some speckle noise is still observed, resulting in
poor contrast of OCT images. Other more serious disadvantages, including loss of fine structure
within the layers and the blurred boundaries, can also be observed in the figure.

Table 3. Quantitative evaluation (mean and standard deviation) across BM3D, NLM and CNN with
the perceptually-sensitive loss function.

PSNR SSIM MS-SSIM MSE

Noise 20.40±0.16 0.19±0.02 0.59±0.01 593.05±20.68

NLM 26.32±0.54 0.45±0.02 0.80±0.01 152.92±17.90

BM3D 28.63±0.47 0.64±0.03 0.86±0.01 89.63±10.07
CNN-SSIM 26.40±1.06 0.71±0.06 0.91±0.01 152.94±37.84

5. Discussion

Noise reduction is one of the greatest challenges in OCT image processing. The major difficulty
of this task is to achieve a proper balance between maximizing the denoising effect and preserving
the structural details. Traditional methods are often limited by the trade-off between these
two factors. However, data-driven supervised learning methods may offer a new insight in
resolving the dilemma. In our proposed method, the OCT denoising problem was treated as a
supervised learning task, taking the advantage of custom dataset with improved labels, and the
perceptually-sensitive loss function. This method achieved satisfying performance on the OCT
denoising task, outperforming the traditional methods in terms of improved visual quality and
retaining detailed features of retinal layers. In this study, a modified DnCNN was employed
to denoise OCT images, which is the most well-known denoising deep network architecture
and widely used in many denoising tasks [31]. On the other hand, we have also investigated
some other network architectures, such as cycleGAN [39] and Residual Network (Resnet) [40].
However, according to the preliminary results listed in Table 4, they have not outperformed over
the DnCNN.

Our approach has been proved to have higher efficacy in generating denoised images of higher
quality compared to other denoising methods, such as NLM and BM3D. With reference to human
vision, the NLM and BM3D images were blur with fading intra-layer details and layer boundaries.
In addition, the background regions of images acquired through NLM and BM3D were not clean
and less homogeneous. After quantitative analysis, additional SSIM and MS-SSIM of NLM and
BM3D were not as good as the proposed deep learning methods, which is consistent with their
visual quality. The better performance may be caused by the effectiveness of the deep learning
algorithms, as well as the perceptually-sensitive loss function, which is friendly to human visual
perception [33,34]. The improved label image generation method also aided the improvement of
the denoising models. As is widely conceded, better labels are important to data-driven methods,
such as the deep learning models.

Table 4. Quantitative evaluation (mean and standard deviation) across three network architectures
with the perceptually-sensitive loss function.

PSNR SSIM MS-SSIM MSE

DnCNN-Perceptually-sensitive loss 26.40±1.06 0.71±0.06 0.91±0.01 152.94±37.84
CycleGAN-Perceptually-sensitive loss 22.66±1.84 0.60±0.05 0.86±0.02 377.35±124.25

Resnet-Perceptually-sensitive loss 21.97±1.95 0.59±0.09 0.88±0.02 451.33±195.65

One of the major highlights of this method is the introduction of the perceptually-sensitive loss
function. It has been acknowledged that this kind of loss is able to preserve the image features
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related to the perception of the human visual perception, and has been verified on various other
medical imaging denoising tasks [33]. In this work, generic loss functions (MSE and L1) and the
well-studied loss function (edge-aware loss function) [22] were used to benchmark the superiority
of the perceptually-sensitive loss function. As validated by the quantitative metrics as well as
the perceptual characteristics, under the condition of other hyperparameters (depth of layers,
mini-batch size, learning rate, etc.) being the same, the perceptually-sensitive loss function
outperformed the others. But compound loss functions that combine perceptually-sensitive loss
function and conventional loss functions (L1 and MSE loss functions), may perform even worse
than using the perceptually-sensitive ones alone. We further investigated the result of different
weights of the loss function component of the compound loss functions of perceptually-sensitive.
The preliminary results are presented in Fig. 7. The results indicate there is some fine tune required
to boost the performance of the synthesized loss function, and this brings about complexity issues
to the problem.

Fig. 7. The PSNR values plotted against different weights λB of the conventional loss
functions (L1 and MSE) in the compound loss function(Eq.12), while λA was fixed to 1.

Another reason for the success of this method is the innovative label data generation operation.
In this study, label images are synthesized from multi-frame scans (50 frames in this study) along
the same direction using our custom OCT scanner. The principle of the frame-averaging method
indicates that averaging more frames is able to yield a cleaner image. This method generates more
accurate labels for training denoising models, and in turn, produces better denoised results. This
is consistent with previous findings which suggest that for images with less noise, the denoising
models trained by neural networks will likely produce images with less noise, and more accurate
textural details [23]. In other words, the performance of image denoising is associated with the
label image quality used for training. This labeling method can acquire cleaner label data for
training OCT denoising models. In the current study, 37 groups of OCT noisy-label B-scan pairs
were used for training the denoising models to produce effectively and successfully denoised
results. The data size, compared with related studies, is rather small.
In this study, noisy images and label images, either from healthy eyes or pathologic eyes, are

the OCT images from the same region, therefore the noise between both datasets makes up the
major portion of the difference. Minimizing such difference is the objective of the denoising
models. Based on this fundamental, well-trained denoising models trained from healthy eyes are
applicable to pathologic eyes. However, the models may have potential generalization issues
when denoise OCT images with pathologic information, since the current training dataset only
contains OCT images of healthy volunteers. Future studies should include different pathological
OCT images to enhance the generalization capability of the proposed method.
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6. Conclusion

In this work, we proposed an effective deep learning network with a perceptually-sensitive loss
function to denoise speckle noise from OCT B-scans. This method well preserved information
related to detailed structure of retinal layers and improved the perceptual metrics in the human
visual perception. We believe the study will facilitate future efforts toward clinical applications.
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